Contents

ii Introduction

iii Acknowledgements

1 Chapter 1: Trends in K–12 Geoscience Education — Preparing Students for College Geoscience Programs and Society

2 Earth Science Education

5 Teachers

7 Students

13 Chapter 2: Postsecondary Education Benchmarks

21 Chapter 3: Trends in Two-Year College Geoscience Programs

22 Geoscience Departments and Faculty

27 Geoscience Students

29 Geoscience Associate’s Degrees

31 Chapter 4: Trends in Four-Year Institution Geoscience Programs

33 Geoscience Departments

35 Geoscience Faculty

42 Geoscience University Students

55 Co-Curricular Activities

73 Skills Development

77 Student Plans for Graduate School

79 Funding of the Geosciences at the University Level

91 Funding of Geoscience Students

95 Chapter 5: Trends in Geoscience Employment — Examining Student Transitions and Workforce Dynamics

96 Early Career Workforce

113 Salary Trends for Geoscience Occupations

115 Demographics of the Geoscience Profession

119 Workforce Age Demographics

128 Geoscience Employment Projections 2016–2026

141 Chapter 6: Trends in Economic Metrics and Drivers of the Geoscience Workforce

142 Federal Research Funding for the Geosciences

145 Commodity Prices and Output

147 Gross Domestic Product Contribution of Geosciences

148 Productive Activity of Geoscience Industries

153 Appendix A: Defining the Geosciences

154 Educational Classifications

156 Occupational Classifications

160 Industry Classifications

161 AGI’s Working Definition of Geoscience Occupations

162 Appendix B: Data Sources
Earth Science Education

As the Next Generation Science Standards continue to influence state science curriculum, more states are incorporating earth science education concepts and courses into their secondary school curriculum. Figures 1.1 and 1.2 and Table 1.1 show the extent to which states recognize earth science courses within the middle and high school curriculum. Compared to 2016, three additional states require earth science for graduation, bringing the total to six. While most of these states require an earth or environmental science course for graduation, three states, Delaware, Kentucky, and Nebraska, require a course that covers specific earth science concepts. These concepts are likely informed by the NGSS guidance, which identifies the core concepts in earth and space science that should be covered in K–12 education. Thirty-six states and the District of Columbia allow for, but do not require, an earth or environmental science course to count towards their science graduation requirement. Forty-eight states assess earth science concepts at least once either in middle school and/or high school through a standardized test.

Figure 1.1: Earth Science Education Graduation Requirements in High School

AGI Geoscience Workforce Program; Data derived from state Department of Education websites

Figure 1.11: SAT Test-Takers Intending College Degrees in Physical Sciences or Interdisciplinary Studies

![Bar chart showing SAT test-takers intending college degrees in Physical Sciences or Interdisciplinary Studies from 2005 to 2017.](chart1)

AGI Geoscience Workforce Program; Data derived from the College Board College-Bound Seniors, Total Group Report, 1996-2017

Figure 1.12: High School Students Meeting ACT College Readiness Benchmarks

![Bar chart showing percentage of high school students meeting ACT college readiness benchmarks from 2008 to 2017.](chart2)

AGI Geoscience Workforce Program; Data derived from ACT National Public Report, 2008-2017
Table 3.1: Percentage of Two-Year Colleges with Geoscience Programs for Selected States

<table>
<thead>
<tr>
<th>State</th>
<th>2-Year Colleges with Geoscience Programs</th>
<th>2-Year Colleges in the State</th>
<th>Percentages of 2-Year Colleges in the State with Geoscience Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>65</td>
<td>186</td>
<td>35%</td>
</tr>
<tr>
<td>Texas</td>
<td>41</td>
<td>113</td>
<td>36%</td>
</tr>
<tr>
<td>Illinois</td>
<td>22</td>
<td>63</td>
<td>35%</td>
</tr>
<tr>
<td>Washington</td>
<td>21</td>
<td>29</td>
<td>72%</td>
</tr>
<tr>
<td>Michigan</td>
<td>14</td>
<td>28</td>
<td>50%</td>
</tr>
<tr>
<td>Virginia</td>
<td>13</td>
<td>46</td>
<td>28%</td>
</tr>
<tr>
<td>Florida</td>
<td>12</td>
<td>64</td>
<td>19%</td>
</tr>
<tr>
<td>New York</td>
<td>12</td>
<td>71</td>
<td>17%</td>
</tr>
<tr>
<td>Minnesota</td>
<td>11</td>
<td>32</td>
<td>34%</td>
</tr>
<tr>
<td>Arizona</td>
<td>10</td>
<td>33</td>
<td>30%</td>
</tr>
</tbody>
</table>

AGI Geoscience Workforce Program; Data derived from AGI's Directory of Geoscience Departments database and Carnegie Classification of Institutions of Higher Education

Figure 3.2: Number of Faculty per Geoscience Department/Program at Two-Year Colleges
Figure 3.3: Percentage of Geoscience Faculty by Rank at Two-Year Colleges, 2017

AGI Geoscience Workforce Program; Data derived from AGI’s Directory of Geoscience Departments database

Figure 3.4: Age Demographics of Two-Year College Geoscience Faculty

AGI Geoscience Workforce Program; Data derived from AGI’s Directory of Geoscience Departments database